Developing a Laboratory for Engineering Education in Mechatronics

Alireza Fazlirad and Robert W. Brennan
Schulich School of Engineering, University of Calgary

Introduction
A report on development of a mechatronics lab for mechanical engineering.
- Labs are designed to align with learning outcomes and graduate attributes.
- Labs rely on low cost mass market electronic devices and open source software.

Syllabus and Learning Outcomes
- Application of electromechanical actuators.
- Common devices for sensing and measurement.
- Design of basic mechatronic systems with sensors and actuators.

The Microcontroller
Experiments are designed with the microcontroller as the focal point.
- Arduino microcontroller chosen for availability and ease of operation.
- Focus on practical application rather than microcontroller architecture.

Actuators and Sensors
A variety of low cost actuators and sensors are introduced, interfacing with microcontroller.
- Actuators chosen to emphasize learning outcomes.
- Employed user-developed open-source software.

The Mobile Robot
The microcontroller is combined with sensors and actuators to create a mobile robot.
- Group project involving programming and operation of a mobile robot in obstacle avoiding perpetual motion.
- Combines skills from multiple experiments into a final lab.

Graduate Attributes
- Use of Engineering Tools
 Modern engineering tools including the microcontroller, actuators and sensors were incorporated.
- Design
 The partly open-ended mobile robot project encourages students to cooperate and experiment to solve an engineering problem.

Student Feedback
Labs were met with universal student approval, feedback included:
- “Very fun and practical applications.”
- “Labs were challenging but very useful.”
- “Lab is really interesting. Doesn’t happen often enough.”
- “Lab is cool and interesting.”
- “The labs were somewhat challenging but really interesting and beneficial.”
- “I enjoyed the labs a lot it was fun to learn about micro processors.”

Challenges and limitations
- Low-cost devices pose reliability issues.
- Arduino IDE is simple to use, but not sufficient for industrial practice.
- Open-source software availability discourages discovery.
- Dedicated data acquisition hardware advantageous.
- Assessment of project-based labs can be improved.
- Time, prerequisite student skills are limiting factors.

Literature cited

Acknowledgments
Support from the National Science and Engineering Research Council of Canada is gratefully acknowledged.
Authors wish to thank graduate teaching assistants Alex Li and Jaime Garcia Rodriguez.

Further information
afazlira@ucalgary.ca
rbrennan@ucalgary.ca